
Lycée Saint François-Xavier

Spécialité NSI - Bac Blanc 2

Ce sujet comporte 8 pages hormis cette page de titre.
Il faut rendre l’énoncé à l’issue de l’épreuve.

Nom :

Classe :

- 14 avril 2021 -



Spécialité NSI Bac Blanc 2

Exercice 1 :

Bertrand est directeur d’une salle de théâtre. Il a reçu l’autorisation d’ouvrir sa salle au public
mais en raison des contraintes sanitaires il doit s’assurer que deux spectateurs sont toujours
séparés par au moins un siège vide. Cherchant à remplir au maximum chaque rang de fauteuils,
Bertrand compte installer les spectateurs une place sur deux.

Amateur de casse-tête, il se pose toutefois une question : dans une rangée de N fauteuils,
combien de dispositions différentes respectent la condition d’espacement des spectateurs ?

Partie A : Approche naïve

Ayant suivi des cours d’informatique, il repense à la représentation binaire des nombres.
Positionner des spectateurs sur un rang de N fauteuils revient à compter combien de nombres
de N bits n’ont aucun bits 1 consécutifs.

Par exemple si N = 3, les dispositions valides sont représentées par les nombres 000, 001,
010, 100, 101. Il y en a 5.

1. Quelles sont les dispositions valides dans le cas où N = 4? Combien y en a-t-il ?

Afin de trouver le nombre de configurations satisfaisantes, Bertrand envisage dans un premier
temps de lister tous les nombres de N bits et de ne retenir que ceux satisfaisants la condition.

Afin de vérifier qu’un nombre vérifie bien la condition, il faut s’assurer qu’il ne comporte pas
deux bits consécutifs égaux à 1. Après quelques recherches, il établit la règle suivante :

«Dans un nombre entier positif ou nul n, le test n & 2**k == 2**k renvoie True
si et seulement si le k-ième bits de n vaut 1»

Remarque : on numérote les bits de droite à gauche en débutant avec l’indice 0. Ainsi, le bit de
rang 1 de 5 est 0 et celui de rang 2 est 1 car 510 = 1012.

Par exemple 5 & 2**1 == 2**1 renvoie False alors que 5 & 2**2 == 2**2 renvoie True.

2. a. Que renvoie l’appel 25 & 2**3 == 2**3 ?
b. Que renvoie l’appel 25 & 2**5 == 2**5 ?

3. Écrire en python une fonction k_ieme_bit qui prend en argument deux nombres entiers
positifs ou nuls n et k et renvoie le k-ième bit de n.

4. Écrire en python une fonction disposition_valide qui prend en argument deux nombres
entiers positifs ou nuls n et maxi et renvoie False si deux bits consécutifs de n sont égaux
à 1, True dans le cas contraire. On pourra utiliser la fonction k_ieme_bit définie à la
question précédente et tester l’égalité des bits de rangs 0 et 1, 1 et 2, . . ., maxi-1 et maxi.

5. a. Le théâtre de Bertrand propose des rangs de 50 sièges. Combien de nombres faut-il
tester pour répondre au problème ?

b. Dans l’hypothèse où pour chacun de ces nombres on teste chacun des 50 bits, combien
de tests faut-il effectuer au total sur l’ensemble de tous les nombres ?

- 1 -



Spécialité NSI Bac Blanc 2

Partie B : Programmation dynamique

Cette approche naïve est donc trop coûteuse. Bertrand décide d’opter pour la programmation
dynamique. Son observation initiale est simple : une rangée de N fauteuils n’est rien d’autre
qu’une rangée de N − 1 fauteuils à laquelle on rajoute une place.

Dès lors on peut rencontrer deux cas de figures :
• le dernier fauteuil est occupé par un spectateur : dans ce cas l’avant-dernier fauteuil était

obligatoirement vide
• le dernier fauteuil n’est pas occupé par un spectateur : dans ce cas l’avant-dernier fauteuil

était vide ou plein
Il est dès lors possible de compter le nombre de dispositions satisfaisantes en complétant un

tableau comme le tableau 1.

Fauteuils Dispositions se terminant Dispositions se terminant
dans la rangée par un siège vide par un siège occupé

0 0 0
1 1 1
2 2 1
3 3 2

4

5

Tableau 1 – Nombre de dispositions selon la taille de la rangée

1. a. Compléter sur cet énoncé les deux dernières lignes du tableau 1.
b. Combien de dispositions valides existent pour une rangée de 5 fauteuils ?

Afin d’écrire un programme permettant de répondre au problème, Bertrand décide de coder
le tableau sous forme d’une liste de liste. Afin de créer un tableau T de n+1 lignes et deux
colonnes initialement remplies de 0, il utilise l’instruction T = [[0,0] for k in range(n+1)].

Dans ce tableau la case de la n-ième ligne et de la colonne 0 (resp. 1) donne le nombre de
dispositions valides se terminant par un siège vide (resp. occupé) pour une rangée de n fauteuils.

Ainsi en reprenant l’exemple du tableau 1 on a T[3][0] = 3 car il existe 3 dispositions
valides de 3 sièges se terminant par un siège vide.

De même, puisqu’il existe deux dispositions se terminant par un siège occupé dans une rangée
de 3 fauteuils, on a T[3][1] = 2.

Après avoir initialisé le tableau, Bertrand modifie deux valeurs. En effet il est évident qu’il
n’existe qu’une disposition valide se terminant par un fauteuil vide dans une rangée d’un seul
fauteuil. Il en est de même pour la disposition se terminant par un fauteuil occupé.

2. Soit n un nombre entier supérieur ou égal à 1.
a. Justifier que l’on a T[n][0] = T[n-1][0] + T[n-1][1].
b. Justifier que l’on a T[n][1] = T[n-1][0].

3. Écrire en python la fonction disposition qui prend en argument le nombre n de fauteuils
d’une rangée et qui renvoie le nombre de dispositions valides existant pour cette taille de

- 2 -



Spécialité NSI Bac Blanc 2

rangée. Cette fonction pourra suivre la démarche suivante :
• Création d’un tableau T de dimensions adaptées initialement rempli de 0
• Mise à jour des valeurs de T pour la rangée de un fauteuil
• Parcours de tous les entiers i entre 2 et n (inclus) et calcul des valeurs de T[i][0]
et T[i][1]

• Retour du nombre de dispositions cherché

Partie C : Affichage des dispositions valides

Après avoir réussi à compter les dispositions valides, Bertrand souhaite désormais les afficher.

Pour ce faire il souhaiter écrire en python une fonction afficher. Cette fonction récursive
fonctionnera de la manière suivante :

• Elle prend en argument un entier n correspondant au nombre de sièges de la rangée et une
chaîne de caractères dispo initialement vide

• Si la valeur de n est égale à 0, elle affiche le contenu de dispo
• Sinon, elle teste la valeur de dispo :

◦ Si cette chaîne est vide ou si son dernier caractère est égal à 0 elle s’appelle deux fois :
� une première fois avec les arguments n-1 et dispo+"0"
� une seconde avec les arguments n-1 et dispo+"1"

◦ Sinon elle s’appelle avec les arguments n-1 et dispo+"1"

1. Écrire le code de la fonction afficher.

Exercice 2 :

Partie A : Observation des processus

Un utilisateur d’un système linux utilise la commande ps -el. On rappelle que les options
-el indiquent que l’on souhaite lister tous les processus (e pour every) et afficher beaucoup
d’informations (l pour long).

Il obtient le retour ci-dessous :

Figure 1 – Sortie de l’appel ps -el

1. Que signifie l’acronyme PID ?

2. Que signifie l’acronyme PPID ?

3. Combien de processus sont actuellement en exécution sur cette machine ?

- 3 -



Spécialité NSI Bac Blanc 2

On rappelle les commandes du terminal suivantes :
• ps -C <commande> : permet de récupérer le PID du processus associé à la <commande>

• ps –ppid <PPID> : permet de lister les processus dont le PPID est égal à <PPID>

L’utilisateur effectue donc les commandes suivantes (on fournit aussi les résultats) :

$ ps -C firefox
2978
$ ps --ppid 2978
PID TTY TIME COMMAND
3379 tty2 00:00:05 Pivileged Cont
3417 tty2 00:00:05 WebExtensions
3455 tty2 00:00:05 Web Content
3501 tty2 00:00:05 Web Content

4. Combien de sous-processus ont pour parent le processus associé à firefox ?

La commande kill -15 <PID> permet de terminer un processus désigné par son <PID>.
D’autre part, la documentation de firefox indique que la commande Web Content permet
d’ouvrir et de gérer un onglet dans le navigateur.

5. Quelle commande doit-on saisir dans le terminal afin de fermer le dernier onglet ouvert
dans firefox ?

Partie B : Exécution des processus

Trois processus P1, P2 et P3 se partagent trois ressources R1, R2 et R3. Dans l’état initial :
• le processus P1 a obtenu la ressource R1 et demande la ressource R2

• le processus P2 a obtenu les ressources R2 et R3

• le processus P3 demande les ressources R1 et R3

Cette situation peut être modélisée par le graphe orienté suivant :

R1 P1 R2

P3 R3 P2

Figure 2 – Exemple de relations processus/ressources

Dans ce graphe, une arête pointant d’un processus vers une ressource exprime le fait que
ce processus demande cette resource. A contrario, une arête pointant d’une ressource vers un
processus indique que le processus a obtenu le contrôle de cette ressource pour s’exécuter.

1. Proposer, si possible, un ordre d’exécution des processus permettant à la machine de ne
pas être bloquée. Justifier.

On considère désormais la situation suivante :
• Un processus P1 a obtenu la ressource R1 et demande les ressources R2 et R3

• le processus P2 a obtenu la ressources R2 et demande les ressources R3 et R1

2. a. Représenter cette situation à l’aide d’un graphe respectant la nomenclature décrite
ci-dessus.

- 4 -



Spécialité NSI Bac Blanc 2

b. Proposer, si possible, un ordre d’exécution des processus permettant à la machine de
ne pas être bloquée. Justifier.

Partie C : Gestion des priorités

On s’intéresse à la gestion des priorités des processus.

Une des méthodes possibles est de donner une valeur de priorité strictement positive à chaque
processus. Le système d’exploitation exécutera le processus ayant la priorité la plus importante.
On suppose que les processus ont tous des valeurs de priorité différentes les unes des autres.

Il faut donc déterminer facilement quel processus a la priorité la plus grande. On peut utiliser
la structure de tas-max. Cette structure de données est définie ainsi :

• un tas-max est un arbre binaire
• tous les niveaux d’un tas-max sont complètement remplis sauf éventuellement le dernier

qui est impérativement rempli de gauche à droite
• chaque nœud a une valeur supérieure à celle de tous ses enfants

22

20

8 14

15

12

22

23

8

15

12

Figure 3 – Un tas-max à gauche et un contre-exemple à droite

Ainsi dans le contre-exemple de la figure 3, on observe qu’un des nœuds ne respecte pas la
condition d’ordre et que le dernier rang n’est pas bien construit.

Une telle structure de données peut être implémentée à l’aide d’un tableau dont on numérote
les cellules en à partir de l’indice 1. Dans ce cadre :

• On place la valeur 0 dans la cellule d’indice 0. Cette valeur sera ignorée dans les différents
traitements

• la racine du tas-max est dans la cellule d’indice 1
• si l’on considère un nœud dont la valeur est stockée dans la cellule n :

− la valeur de son fils gauche est stockée dans la cellule 2n

− la valeur de son fils droit est stockée dans la cellule 2n + 1

0
0

22
1

20
2

15
3

8
4

14
5

12
6

Figure 4 – Représentation du tas-max de la figure 3 dans un tableau

1. Écrire le tableau représentant le tas-max de la figure 5.

2. Dessiner le tas-max représenté par le tableau de la figure 6.

3. On considère un nœud dont la valeur est stockée dans la cellule d’indice 54 d’un tableau.
a. Ce nœud est-il le fils gauche ou droit de son père ?
b. Dans quelle cellule se trouve son père ?

- 5 -



Spécialité NSI Bac Blanc 2

45

40

17

16 14

28

30

12 27

Figure 5

0
0

35
1

30
2

12
3

20
4

23
5

10
6

5
7

2
8

Figure 6

c. Dans quelle cellule se trouve son grand-père (le père de son père) ?

Lors de la construction d’un tas-max, on commence par ajouter la nouvelle valeur à la fin du
tableau. Cette opération peut rompre la règle d’ordre si cette valeur est supérieure à celle d’au
moins un de se ses ascendants. Il faut dans ce cas tasser l’arbre afin de placer la nouvelle valeur
à sa place. Pour ce faire on la fait remonter de proche en proche jusqu’à ce que son parent lui
soit supérieur.

22

20

8 14

15

12 21

22

20

8 14

21

12 15

Figure 7 – Insertion de la valeur 21 dans le tas-max

4. Écrire le tableau représentant le tas-max de la figure 6 après insertion de la valeur 18.

Le pseudo-code de la fonction d’insertion est donné ci-dessous. Son fonctionnement corres-
pond à celui expliqué plus haut.

Fonction insertion(tas , valeur) :
"""
Insère la valeur dans le tableau tas représentant un tas -max
Le tableau respecte la condition d’ordre avant l’appel de la

fonction
Renvoie un tableau respectant la condition l’ordre avec la

valeur inserée
"""

# On ajoute valeur à la fin du tableau
Ajouter valeur à la fin de tas

# L’indice étudié
i = longueur(tas) - 1

Tant que i != 1 et valeur > tas[i//2] :

- 6 -



Spécialité NSI Bac Blanc 2

# i//2 est la division entière
Echanger les valeurs de tas[i] et tas[i//2]
i = i // 2

Renvoyer tas

5. Écrire le code python de la fonction insertion décrite ci-dessus.

On possède désormais une structure de tas-max satisfaisante. L’élément maximal est donc
toujours à l’indice 0. Lorsqu’il doit déterminer quel processus exécuter en priorité, le système
d’exploitation n’a qu’à piocher ce premier élément. Plutôt que d’ôter cette valeur du tableau
(opération coûteuse car il faudrait "décaler" toutes les autres valeurs d’un cran), on échange
cette valeur avec la dernière que l’on supprime. Cette opération risque toutefois de rompre la
structure d’ordre comme indiqué dans la figure 8.

0
0

22
1

12
2

15
3

8
4

11
5

7
6

22

12

8 11

15

7

0
0

7
1

12
2

15
3

8
4

11
5

7

7

12

8 11

15

Figure 8 – Un tas-max avant et après avoir ôté la valeur maximale

6. Compléter sur cet énoncé la fonction retablir ci-dessous écrite en python. Cette fonction
prend en argument un tableau codant un tas-max dans lequel il est possible que la première
valeur rompe l’ordre. Il faut alors faire "descendre" cette valeur. La fonction renvoie le
tableau tas modifié.

def retablir(tas) :
# La valeur a descendre
v = tas[1]
# l’indice en cours
i = 1

# Tant qu’il y a un fils gauche
while 2*i < ............... :

# l’indice du fils -gauche
i_g = ...............
# l’indice du fils -droit
i_d = ...............
# Selection du fils ayant la priorite maximale
i_max = i_g
if i_d < len(tas) and tas[i_g] .... tas[i_d] :

i_max = ...............
# Si la racine est superieure au fils maximal , on arrete
if v > tas[i_max] :

- 7 -



Spécialité NSI Bac Blanc 2

break
else :

# on place la valeur d’indice i_max en i
tas [...............] = tas [...............]
# On etudie desormais i_max
i = ...............

# On place la valeur a descendre en i
t[i] = v

# on retourne le tas
return ...............

- 8 -


