LYCEE SAINT FRANCOIS-XAVIER

Spécialité NSI - Bac Blanc 2

Ce sujet comporte 8 pages hormis cette page de titre.
Il faut rendre 1’énoncé a l’issue de 1’épreuve.

Nom :

Classe :

- 14 avril 2021 -



Spécialité NSI Bac Blanc 2

Exercice 1 :

Bertrand est directeur d’une salle de théatre. Il a regu I’autorisation d’ouvrir sa salle au public
mais en raison des contraintes sanitaires il doit s’assurer que deux spectateurs sont toujours
séparés par au moins un siege vide. Cherchant a remplir au maximum chaque rang de fauteuils,
Bertrand compte installer les spectateurs une place sur deux.

Amateur de casse-téte, il se pose toutefois une question : dans une rangée de N fauteuils,
combien de dispositions différentes respectent la condition d’espacement des spectateurs ?

Partie A : Approche naive

Ayant suivi des cours d’informatique, il repense a la représentation binaire des nombres.
Positionner des spectateurs sur un rang de N fauteuils revient & compter combien de nombres
de N bits n’ont aucun bits 1 consécutifs.

Par exemple si N = 3, les dispositions valides sont représentées par les nombres 000, 001,
010, 100, 101. Il y en a 5.

1. Quelles sont les dispositions valides dans le cas ot N = 47 Combien y en a-t-il 7

Afin de trouver le nombre de configurations satisfaisantes, Bertrand envisage dans un premier
temps de lister tous les nombres de N bits et de ne retenir que ceux satisfaisants la condition.

Afin de vérifier qu'un nombre vérifie bien la condition, il faut s’assurer qu’il ne comporte pas
deux bits consécutifs égaux a 1. Apres quelques recherches, il établit la regle suivante :

«Dans un nombre entier positif ou nul n, le test n & 2*¥k == 2%xk renvoie True
si et seulement si le k-iéme bits de n vaut 1»

Remarque : on numérote les bits de droite a gauche en débutant avec 'indice 0. Ainsi, le bit de
rang 1 de 5 est O et celui de rang 2 est 1 car 5;9 = 101».

Par exemple 5 & 2**1 == 2x*x1 renvoie False alors que 5 & 2**2 == 2%x*2 renvoie True.

a. Que renvoie l'appel 25 & 2%*3 == 2xx37
b. Que renvoie 'appel 25 & 2*x5 == 2x*57

3. Ecrire en python une fonction k_ieme_bit qui prend en argument deux nombres entiers
positifs ou nuls n et k et renvoie le k-ieéme bit de n.

4. Ecrire en python une fonction disposition_valide qui prend en argument deux nombres
entiers positifs ou nuls n et maxi et renvoie False si deux bits consécutifs de n sont égaux
a 1, True dans le cas contraire. On pourra utiliser la fonction k_ieme_bit définie a la
question précédente et tester 1’égalité des bits de rangs O et 1, 1 et 2, ..., maxi-1 et maxi.

5. a. Le théatre de Bertrand propose des rangs de 50 sieges. Combien de nombres faut-il
tester pour répondre au probléme ?

b. Dans I’hypothese ot pour chacun de ces nombres on teste chacun des 50 bits, combien
de tests faut-il effectuer au total sur I’ensemble de tous les nombres ?




Spécialité NSI Bac Blanc 2

Partie B : Programmation dynamique

Cette approche naive est donc trop cotiteuse. Bertrand décide d’opter pour la programmation
dynamique. Son observation initiale est simple : une rangée de N fauteuils n’est rien d’autre
qu’une rangée de N — 1 fauteuils a laquelle on rajoute une place.

Deés lors on peut rencontrer deux cas de figures :

e le dernier fauteuil est occupé par un spectateur : dans ce cas ’avant-dernier fauteuil était
obligatoirement vide

e le dernier fauteuil n’est pas occupé par un spectateur : dans ce cas I'avant-dernier fauteuil
était vide ou plein

Il est des lors possible de compter le nombre de dispositions satisfaisantes en complétant un
tableau comme le tableau 1.

Fauteuils Dispositions se terminant | Dispositions se terminant
dans la rangée par un siege vide par un siege occupé

0 0 0

1 1 1

2 2 1

3 3 2
| 4 | | |
| 5 | | |

Tableau 1 — Nombre de dispositions selon la taille de la rangée

Compléter sur cet énoncé les deux derniéres lignes du tableau 1.

a.
b. Combien de dispositions valides existent pour une rangée de 5 fauteuils ?

Afin d’écrire un programme permettant de répondre au probleme, Bertrand décide de coder
le tableau sous forme d’une liste de liste. Afin de créer un tableau T de n+1 lignes et deux
colonnes initialement remplies de 0, il utilise I'instruction T = [[0,0] for k in range(n+1)].

Dans ce tableau la case de la n-ieme ligne et de la colonne 0 (resp. 1) donne le nombre de
dispositions valides se terminant par un siege vide (resp. occupé) pour une rangée de n fauteuils.

Ainsi en reprenant 'exemple du tableau 1 on a T[3][0] = 3 car il existe 3 dispositions
valides de 3 siéges se terminant par un siege vide.

De méme, puisqu’il existe deux dispositions se terminant par un siége occupé dans une rangée
de 3 fauteuils, on a T[3][1] = 2.

Apres avoir initialisé le tableau, Bertrand modifie deux valeurs. En effet il est évident qu’il
n’existe qu’une disposition valide se terminant par un fauteuil vide dans une rangée d’un seul
fauteuil. Il en est de méme pour la disposition se terminant par un fauteuil occupé.

2. Soit n un nombre entier supérieur ou égal a 1.
a. Justifier que 'on a T[n] [0] = T[n-1]1[0] + T[n-1][1].
b. Justifier que 'on a T[n] [1] = T[n-1][0].

3. Ecrire en python la fonction disposition qui prend en argument le nombre n de fauteuils
d’une rangée et qui renvoie le nombre de dispositions valides existant pour cette taille de




Spécialité NSI Bac Blanc 2

rangée. Cette fonction pourra suivre la démarche suivante :
e Création d’un tableau T de dimensions adaptées initialement rempli de 0
e Mise a jour des valeurs de T pour la rangée de un fauteuil

e Parcours de tous les entiers i entre 2 et n (inclus) et calcul des valeurs de T[i] [0]
et T[i][1]

e Retour du nombre de dispositions cherché
Partie C : Affichage des dispositions valides
Apres avoir réussi a compter les dispositions valides, Bertrand souhaite désormais les afficher.

Pour ce faire il souhaiter écrire en python une fonction afficher. Cette fonction récursive
fonctionnera de la maniere suivante :

e Elle prend en argument un entier n correspondant au nombre de sieéges de la rangée et une
chalne de caracteres dispo initialement vide

e Si la valeur de n est égale a 0, elle affiche le contenu de dispo
e Sinon, elle teste la valeur de dispo :
o Si cette chalne est vide ou si son dernier caractere est égal a 0 elle s’appelle deux fois :
¢ une premiere fois avec les arguments n-1 et dispo+"0"
¢ une seconde avec les arguments n-1 et dispo+"1"

o Sinon elle s’appelle avec les arguments n-1 et dispo+"1"

1. Ecrire le code de la fonction afficher.

Exercice 2 :
Partie A : Observation des processus

Un utilisateur d’un systeme linuz utilise la commande ps -el. On rappelle que les options
-el indiquent que l'on souhaite lister tous les processus (e pour every) et afficher beaucoup
d’informations (1 pour long).

I1 obtient le retour ci-dessous :

()
=
=
=]

WCHAN CMD
systemd
kthreadd
rcu_gp
rcu_par_gp
kworker /@:0-ev
kworker /@:0H-k
kworker/@:1-ev

i
=

(%]

F
4
1
1
1
1
1
1

e
=~ oW AW
D0 000K MN

Figure 1 — Sortie de ’appel ps -el

1. Que signifie 'acronyme PID 7
2. Que signifie 'acronyme PPID?

3. Combien de processus sont actuellement en exécution sur cette machine ?




Spécialité NSI Bac Blanc 2

On rappelle les commandes du terminal suivantes :
e ps -C <commande> : permet de récupérer le PID du processus associé a la <commande>
e ps —ppid <PPID> : permet de lister les processus dont le PPID est égal a <PPID>

L’utilisateur effectue donc les commandes suivantes (on fournit aussi les résultats) :

$ ps -C firefox

2978
$ ps --ppid 2978
PID TTY TIME COMMAND

3379 tty2 00:00:05 Pivileged Cont
3417 tty2 00:00:05 WebExtensions
3455 tty2 00:00:05 Web Content
3501 tty2 00:00:05 Web Content

4. Combien de sous-processus ont pour parent le processus associé a firefox ?

La commande kill -15 <PID> permet de terminer un processus désigné par son <PID>.
D’autre part, la documentation de firefox indique que la commande Web Content permet
d’ouvrir et de gérer un onglet dans le navigateur.

5. Quelle commande doit-on saisir dans le terminal afin de fermer le dernier onglet ouvert
dans firefox?

Partie B : Exécution des processus

Trois processus P;, P» et P3 se partagent trois ressources R, Ro et R3. Dans I’état initial :
e le processus P; a obtenu la ressource R; et demande la ressource Ro

e le processus P, a obtenu les ressources Rs et R3

e le processus P53 demande les ressources Ry et R3

Cette situation peut étre modélisée par le graphe orienté suivant :

P3 --- P2

Figure 2 — Exemple de relations processus/ressources

Dans ce graphe, une aréte pointant d’un processus vers une ressource exprime le fait que
ce processus demande cette resource. A contrario, une aréte pointant d’une ressource vers un
processus indique que le processus a obtenu le contréle de cette ressource pour s’exécuter.

1. Proposer, si possible, un ordre d’exécution des processus permettant a la machine de ne
pas étre bloquée. Justifier.

On considere désormais la situation suivante :
e Un processus P; a obtenu la ressource Ry et demande les ressources Ro et R

e le processus P, a obtenu la ressources Ry et demande les ressources R3 et Ry

2. a. Représenter cette situation a I’aide d’'un graphe respectant la nomenclature décrite
ci-dessus.




Spécialité NSI Bac Blanc 2

b. Proposer, si possible, un ordre d’exécution des processus permettant a la machine de
ne pas étre bloquée. Justifier.

Partie C : Gestion des priorités
On s’intéresse a la gestion des priorités des processus.

Une des méthodes possibles est de donner une valeur de priorité strictement positive a chaque
processus. Le systeme d’exploitation exécutera le processus ayant la priorité la plus importante.
On suppose que les processus ont tous des valeurs de priorité différentes les unes des autres.

Il faut donc déterminer facilement quel processus a la priorité la plus grande. On peut utiliser
la structure de tas-max. Cette structure de données est définie ainsi :

e un tas-max est un arbre binaire

e tous les niveaux d’un tas-max sont completement remplis sauf éventuellement le dernier
qui est impérativement rempli de gauche a droite

e chaque nceud a une valeur supérieure a celle de tous ses enfants

Figure 3 — Un tas-mazx a gauche et un contre-exemple a droite

Ainsi dans le contre-exemple de la figure 3, on observe qu'un des nceuds ne respecte pas la
condition d’ordre et que le dernier rang n’est pas bien construit.

Une telle structure de données peut étre implémentée a l’aide d’un tableau dont on numérote
les cellules en a partir de I'indice 1. Dans ce cadre :

e On place la valeur 0 dans la cellule d’indice 0. Cette valeur sera ignorée dans les différents
traitements

e la racine du tas-maz est dans la cellule d’indice 1
e si I'on considere un noeud dont la valeur est stockée dans la cellule n :
— la valeur de son fils gauche est stockée dans la cellule 2n

— la valeur de son fils droit est stockée dans la cellule 2n + 1
0 1 2 3 4 5 6

012212015 | 8 | 14|12

N—_"

Figure 4 — Représentation du tas-maz de la figure 3 dans un tableau

1. Ecrire le tableau représentant le tas-maz de la figure 5.
2. Dessiner le tas-max représenté par le tableau de la figure 6.

3. On considére un noeud dont la valeur est stockée dans la cellule d’indice 54 d’un tableau.
a. Ce noeud est-il le fils gauche ou droit de son pere?

b. Dans quelle cellule se trouve son pere ?




Spécialité NSI Bac Blanc 2

Figure 5

0 1 2 3 4 5 6 7 8
0 [35(30(12]20|23[10| 5 | 2

Figure 6

c. Dans quelle cellule se trouve son grand-peére (le pere de son pere) ?

Lors de la construction d’un tas-mazx, on commence par ajouter la nouvelle valeur a la fin du
tableau. Cette opération peut rompre la régle d’ordre si cette valeur est supérieure a celle d’au
moins un de se ses ascendants. Il faut dans ce cas tasser I'arbre afin de placer la nouvelle valeur
a sa place. Pour ce faire on la fait remonter de proche en proche jusqu’a ce que son parent lui

soit supérieur.

Figure 7 — Insertion de la valeur 21 dans le tas-mazx

4. Ecrire le tableau représentant le tas-maz de la figure 6 aprés insertion de la valeur 18.

Le pseudo-code de la fonction d’insertion est donné ci-dessous. Son fonctionnement corres-
pond a celui expliqué plus haut.

Fonction insertion(tas, valeur)
wn
Insére la valeur dans le tableau tas représentant un tas-max
Le tableau respecte la condition d’ordre avant 1’appel de la
fonction
Renvoie un tableau respectant la condition 1’ordre avec la

valeur inserée
mnn

# On ajoute valeur a la fin du tableau
Ajouter valeur & la fin de tas

# L’indice étudié
i = longueur(tas) - 1

Tant que i != 1 et valeur > tas[i//2]




Spécialité NSI Bac Blanc 2

# i//2 est la division entiére
Echanger les valeurs de tas[i] et tas[i//2]
i=1i// 2

Renvoyer tas

5. Ecrire le code python de la fonction insertion décrite ci-dessus.

On posseéde désormais une structure de tas-mazx satisfaisante. L’élément maximal est donc
toujours a l’indice 0. Lorsqu’il doit déterminer quel processus exécuter en priorité, le systéme
d’exploitation n’a qu’a piocher ce premier élément. Plutét que d’6ter cette valeur du tableau
(opération couteuse car il faudrait "décaler" toutes les autres valeurs d’un cran), on échange
cette valeur avec la dernieére que l’on supprime. Cette opération risque toutefois de rompre la
structure d’ordre comme indiqué dans la figure 8.

ORI
0 (221215 8 |11 | 7 e@a

0 1 2 3 4 5 G
0‘7‘12‘15‘8‘11% @ @

Figure 8 — Un tas-max avant et apres avoir 6té la valeur maximale

6. Compléter sur cet énoncé la fonction retablir ci-dessous écrite en python. Cette fonction
prend en argument un tableau codant un tas-max dans lequel il est possible que la premiére
valeur rompe 'ordre. Il faut alors faire "descendre" cette valeur. La fonction renvoie le
tableau tas modifié.

def retablir(tas)
# La valeur a descendre
tas [1]
’indice en cours
1

-

v
#
i

# Tant qu’il y a un fils gauche
while 2%i < ...............
# 1’indice du fils-gauche

i_g = o
# 1’indice du fils-droit
id= ..o,
# Selection du fils ayant la priorite maximale
i_max = i_g
if i_d < len(tas) and tas[i_g] .... tas[i_d]
1 max = ..

# Si la racine est superieure au fils maximal, on arrete
if v > tas[i_max]




Spécialité NSI

Bac Blanc 2

break
else
# on place la valeur d’indice i_max en i

tas[............... ] = tas[...............

# On etudie desormais i_max

i= . i,
# On place la valeur a descendre en i
t[i]l = v

# on retourne le tas
return ...............




